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\ ABSTRACT

Etficient multistep procedures for time-stepping Galerkin methods for non-

linear parabolic partial differential equations with nonlinear Neumann boundary
conditions are presented and analyzed. The procedures involve using a pre-
conditioned iterative method for approximately solving the different lineax
equat ions arising at each time step in a discrete time Galerkin method. Optimal
order convergence rates are obtained for the iterative methods, Work estimates

ot almost optimal order are obtained. .., . iy .
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Many athematica. models for heat flow or fluid flow involve the specifi-
cation of « flow rate across the boundary of a region which may depend in a
ir fashion upon the unknown variable (e.g. temperature). Fecrmulation

and analysis of efficient numerical procedures for approximating the solutions
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of such problems are studied. Previously, finite element methods used for
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modeling these physical problems have-deen at most second order correct in the
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time-discretization error. Jde—p;aduee_gethodﬁkaich are second, third, and
fourth order correct in time and which convert the nonlinear problems into
solution of large systems of linear equations via an extremely stable algorithm
witii essentially no restrictions between sizes of time and space discretizations.

The basic multistep methods presented produce different systems of linear
equations at each time step. A preconditioned iterative stabilization procedure
1s presented and analyzed which allows for the factorization of only one large
matrix to be used at each time level in the solution process. Optimal order
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error estimates are obtained.'&The paper also contains work estimates which

show the large computational savings of the preconditioned iterative stabiliza-
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EFFICIENT MULTISTEP PROCEDURES FOR NONLINEAR PARABOLIC
PROBLEMS WITH NONLINEAR NEUMANN
BOUNDARY CONDITIONS

Richard E. Ewinq* :

[. Introduction. We shall consider the numerical solution of nonlinear para-
bolic partial differential equations with nonlinear Neumann boundary conditions of
the form

a) c(x,u) %%'~ v ¢ [a{x, 0}V # b(x,n)] = f(x, L), X € Qy L €T ,
b) a(x,u) %%-& b(x,u) * v = g(x,t,u), e By & &0 {11)
¢} u(x,0) = u()(x), X e Ry
where ) 1s a bounded domain in Rd v d < 3, with boundary 3, v 1is the outward
unit normal to 3, J (0., T], and ¢, &; b, ¥, g, &and u, are prescribed. We

shall use a Galerkin approximation in the space variable and high-order, efficient,
multistep time-stepping procedures. We first present basic multistep time-stepping
procedures which produce a different linear system of equations to be solved at
each time step. We then modify the basic procedures by using a preconditioned
1terative method to approximate the solution of the linear equations. The use of

a time-independent preconditioning matrix eliminates the need to refactor a new
matrix at each time step, while the iterative procedure stabilizes the resulting
algorithm, Using this modification, we obtain the same order error estimates as
for the base scheme with greatly reduced computational requirements. We obtain
very nearly optimal possible work estimates for our procedure.

Galerkin procedures for parabolic problems with nonlinear Neumann boundary
conditions were first considered by Douglas and Dupont in [8). Then, in [(17],
Luskin extended this work of [8] to quasilinear equations similar to those con-
sidered here. Luskin used Crank-Nicolson time-stepping methods which are second

t " .
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order correct in the time discretization. In [12], the author used the iterative
stabilization techniques developed in [9, 10] to present computationally efficient
variants of the methods of Luskin and extended these methods to treat coupled sys-
tems of nonlinear partial differential equations with nonlinear boundary conditions.
In this paper, we present time-stepping procedures which are higher-order in time
than those analyzed in [8-13, 17]). These time-stepping schemes are based on the
backward differentiation multistep schemes [cf. 15, 14, 19], They have been pre-
sented and analyzed for quasilinear parabolic equations by Bramble and Sammon in
[2, 7]1. Very efficient alternating direction variants for use on rectangular
domains will appear in [4, S].

The efficient time-stepping techniques presented here can also be used to
analyze approximation procedures for initial boundary value problems for many other
types of nonlinear partial differential equations. The author has applied itera-
tive stabilization techniques to equations of Sobolev type (in [10)) which have
applications in thermodynamics, fluid flow in fissured rock, and shearing of second
order fluids. 1In [11, 12], the methods are applied to coupled systems of equations
which model miscible displacement in porous media. Also the author has used itera-
tive methods successfully for second order in time equations (in [13)) which have
applications in vibrational problems and nonlinear viscoelasticity.

In Section 2 we introduce certain notational preliminaries and present the
base time-stepping Galerkin schemes. In Section 3 we present our iterative modi-
fications of the base methods and analyze the effect of the iterative approximation
on a single time step. In Section 4 we obtain global error estimates for a partic-
ular multistep method. Section 5 contains a brief discussion of the computational
complexity of the methods presented.

II. Preliminaries and Description of Galerkin Methods. Let (¢¥) = f vdx,
N

-
llwz = (P, ¥), (¥, Q) = fmwwds, and lwl‘ = (y,y). Let w:(;:) be the Sobolev
space on () with norm g

1/s8
o

iy

ot | = ¥
w: | <kl ax®

AT

with the usual modification for s = », When s = 2, let |yl .. el = "Uﬂk
W, n

and u| o= W] . = [¥],. TE VF = (FF), write NVFI, in place of
w H 5

w
s
s s XM
e W + IF_ |l . For definitions of corresponding fractional order spaces,
1.k 2k
W W
s s
see (16].

Let (Mh} be a family of finite-dimensional subspaces of ul(ﬂ) with the

following property:
For p=2 or p=", there exist an integer ¢ > 2 and a constant X,

such that, for 1 < q <r and V ¢ WE(Q).




3
! f_

inf (ly=xl 4 nllu-dl 3 o< kol w9 (2.2)
Xe M w) wl ( wq

h p P p P

We also assume that {Mh} satisfies the following so-called "inverse assumptions™:

. ih « l |
&) HVIIl < h xonv" -

by |w] - h'1/3K ot (2%
- 0
d

R T I N L B S W [
L (%) L (%)

Restrict 2 as follows (with (S) denoting the collection of restrictions):

Y 8 is Hz-roqular.
[~

(8 : 2) 3N is Lipschitz.

3) There exists a constant KO such that

¥

le]? < Kolell tell (2.4)

If X 1is a normed space on ! with norm “'Hx and ¢ : (0,T] » X, then we

1

lefine
T : l/s
a) el = {[ le(eyijael . 1 <s<=
L (J:X) 0 L TR
(2.5)
by el = sup lle ()l

L (J3:X)  tel0,T)

Throughout the paper we shall assume that a and ¢ are bounded above and
below by positive constants and that a, b, ¢, and g are smooth functions ot
thelr arguments. We shall also assume that the solution u is sufficiently

smooth for our arquments to hold. For tvpical explicit smoothness assumptions on
u and the coefficients, see [8-12, 17]).

As ig [18], we shall introduce an auxiliary elliptic problem to aid in our
malysis. Let A > 0 be chosen sufficiently large that the bilinear form

N(w:""X) (@a(P) W, X)) + A(p,X) = (g(t,¢).X)

satisfies

il
N(Vse ) > Kolw‘u;. Vol e M




Let W ¢ Mh be the projection of u into "h' defined, for each t ¢ J, by
N(u(*,t); W(*,t),X) = N(u(+,t); ul+,t),x) (2.6)
= - {c(u) ?:’.X) + (b(u) va) + (f(u),x) + A(U.X). X « M.h

Then, as in (8, 9, 12, 18), we can obtain the following lemma.

Lemma 2.1. There exists a constant Kl - Kl(u) such that if n=u - W, s =0

or s=1, and 2 <q<r,

a) lnll < kAT Sl
L (J;H) L (J:HY)

3n"
b) "a—t-

In order to require weak smoothness assumptions on 23, we shall need to use
some duality theory and obtain some approximation theory results in negative-
indexed norms. For these results, assume that , a, b, ¢, and g are suffi-
ciently smooth [16] that for each t ¢ J, if

q-s du
< kK, ht T {lhal + -—-u }
12 (a:6%) 1 L2 e th 2 5u9

a) -9V -+ [a(x,u)Vu] + Xlu - *1' x €9 ,

(2.8)
3u
b) a(x,u) " 02, x € 3N ,
then
2.9
ull o < K (el + l*zl d (2.9)
k+ =
-
If (2.8)-(2.9) holds, we shall say that Q is Hk’z-requlnr. Next, define for
k >0,
r a) el = sup{(vew) : el =1}
(2.10)
b) |*|_k = sup{ (y,w) : Ivlk =1}
Lemma 2.2. If Q is Hk*z—reqular for Xk <1, there exists a constant K(u)
such that for 1 < q<r and t ¢ J,
LTI TR . PR YOIl (IR - (210
- (k+ 3) -x . q

Proof: See [12).

We also make the assumption on (Hh) and u that there exists a constant

K2 such that

ode




e ——

3 .
Hwll 3 L e I ow il & S o ” ,)v: " + " V%:i“
L (J;L) L (3 aiviagt, GRS i bl Wi
L (3:L) L (J:L )
32w 3w 2w
+ -—f;l * == o <K,
3¢ | 3 it
Ll S I asnt () LY (a:mh)

ufficient conditions for the above to hold can be found in [9, 10, 18).

We next consider discrete-time Galerkin approximations. Let At > 0,

Q B
N=T/0t ¢e 2 and t = 0At, 0 € R. Also let ¢ = wn(x) w(x,tn), and

Gy w"*l 2 ll’nﬂ_wn
t At
b) Swn+1 g u]n+1 % wn
) 62wn+1 = wn+1 o 2“pn + wn-l (2.12)
Q) San+l 5 wn+l i 3wn p 3wn-l -1 wn—2
. 64w“*1 5 wn+1 o 4wn X 6wn-l . 4¢n-2 " wn-3 ;

We next define a family of extrapolated coefficient backwards differentiation multi-
step discrete time methods.

Let U : {to,...,tN} > Mh be an approximate solution of (1.1). Assume that

k : : :
U~ are known for k < n. Then, given certain choices of parameters g, O PL

X and a

; ~n+l : n+1l :
3! 4 and an extrapolation Un , we determine U to satisfy

+
il O gD

(c (O™ el

= % + sa@™Hw™, w

~ o - v -3
= g(g(t™?, 8™y, 3 & (8™ f; o, 0™a,0" a0 2 0™, 0 2

- ast@™y, ¢ seee™, h, m, x e moo

A particular example from this family of methods is the choice 6n+1 = Un, g =i
and o, = 0, i=1,2,3,4. This choice is the the well-known backward Euler method

with lagged coefficients which is known to have time-discretization error of order
At. Other choices of the parameters and extrapolation in the coefficients yield

temporal errors of order (At)z. (At)3. and (At)4.

F
§
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i
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We present these special choices in the following table.

Table 1: Selected Multistep Methods

:
t
:f
:
§
L
i
é

Extrapolation 8 a a, ay a, ﬁ Time-discretization
6n+1 g 3 Error
, 13k i:
il 1 0 0 0 0 At
; P Lan tia Tan e 0 (at)?
? o™l fom [comr |2m | o | (a3
v o™ (12725 23725 [-36/25 | 16/25 | -3/25 (at)

We note that by extrapolating the coefficients in (2.13), we have reduced each of

[ the above problems to the solution of a different set of linear equations at each
: time step.

1 III. TIterative Stabilization Procedures. In this section we consider effi-

g cient methods for solving the linear equations arising from (2.13). We note that
the coefficient matrices from (2.13) change with each time step. In order to avoid
the factorization of different matrices at each time step to solve the different

systems of linear equations, we shall present an iterative method for approximating
their solution to sufficient accuracy.

Let {vi}T_l be a basis for M and let U™ from (2.13) be written as
" = ? o, SR (3.1)
. > YRR
i=1
Using (3.1), (2.13) can be written as
n n+l n n . n+l-i n
LUENE -E) = IR ] o,k b+ 8tF (D)) (3.2)
i=1
= FNE)

where the matrices and vectors are of the form




a) l.:\(") e+ 't:':\“ p
A
. [
b) © L) w pResf k£ );_,v")\ 2
= R K 1
k=1 .
/\\
(3.3)
n =1 "
e) AM&) = ((al } €le)ve, Vo))
e K ) 1
k=1
o \ ,,rﬁ \\
n 4 n+1 " R ,
d) F,.(£) = B((g(t ’ ERYe)=(bl } £E 2). Vo)
1 - Rk =Tk K
k=1 ' k=1 ’
v(EL o 3 S - ‘_n-) A
N ,kvk 'y '
k=1
for P 3 M

Instead of solving (3.2) exactly, we shall approximate its solution by using

an iterative procedure which has been preconditioned by I‘o, the associated matrax
with coefficients evaluated at t = 0, for each time step. The preconditioning
process eliminates the need for factoring new matrices at each time step, while the
iterative procedure stabilizes the resulting problem. The stabilization process re-
aquires iteration only until a predetermined norm reduction is achieved.

Denote by

m A
Vie §J v.@ (3.4)
ol -

g : . m : ’ , - 2
the approximation to U produced by only approximately solving (3.2). An itera-

; K g ; : !
tive procedure for obtaining the necessary V starting values using the 1iterative
vrocedure described here will appear in [3]. We assume such a starting procedure
nas been used to obtain sufficiently accurate (see (4.7)) starting values. Thus

b) n : .
assume V ,...,V have been determined. We shall determine the M-dimensional

n+l n+l : i : .
vector vy (and thus V ) using a preconditioned iterative method to approxi-
n+l AR n+l n
mate ¢ from (3.2). As an initial guess for ¢ - £ we shall extrapolate

trom previously determined values. Specifically, for a particular method having

time-truncation error (At)", we shall use as the initialization for our iterative

procedura

n+l 6% . u+l n+l .
Y % YT - 41 AR Y (3.5)

th : m & .
where the m backward difference operator § is defined in (2.12) for
: : . i » S =0
t1...,4. Since we are using previously determined vy in the coefficient

; ; n+1l .
“ices to determine vy v our errors accumulate.




In order to estimate the cumulative error, we first consider the single step
- -n+ *
error. We define Yn 1 to satisfy

P -y =, n>w . (3.6)

We can use any preconditioned iterative method which yields norm reductions of the
form

™) * “ (¥

1/2 -n+l B Yn+1 2 6u+1Yn+l)"e (3.7)

n
< p

o 2o RETIY)TTLY

where 0 < P < 1 and the subscript e denotes the Euclidean norm of the vector.

A specific iterative procedure for obtaining (3.7) is the preconditioned conjugate
gradient method analyzed in (1, 9, 10).

Let

ay eb? = (o™t
Cn

b) Hwnzn . (WP 0.9 (3.8)
a

o lelll = neh 4 (8e) Y2101 .
[ a

be special norms and seminorms. Note that |l i and -l o are uniformly equi~
c a
valent to ll*ll and IIV-ll, respectively. Then letting

- -m
el 1 (3.9)
i=1

with ;“\defined in (3.6), we see that §n+1 satisfies

an+l

-n+l _.n
(6™, iy 0+ 8a@™h ™o + sm @™y,

ot (3.10)

a :
= 8™ ™ xy + se ™™ 0 + e = [a T, xen .
i=1

Also using (3.8), our single-step error (3.7) becomes

~ P
W™, < o2 Ml nznsn . (3.11)
n

We note that as in [6, 12], there is a Q depending upon bounds for the coeffi-
cients, such that




a) <20, with 0<g~1, and

(3ER)
n .
b) ~ . nAt, n 1
1+ n <2
n
IV. A Priori Error Estimates. In this section we develop a priori bounds for
n n 5 5 .
the errors V - u for the procedures defined in (3.10) using the base schemes de-

fince 1n (2.13). The techniques for treating the nonlinearities in the coefficients
f a, b, and f are tedious and appear in [7, 9, 12]. Therefore, for simplicity

f exposition, we shall consider the simplified problem

R

1

a) clx,t) e vV e+ lalx,t)Vu] =0 e -t R R (el

: . 3u X
b) a(x,t) T gix,t,a) oA £ 0, T e (4.1)
c) uwix,0) = u (x) PO -G ¢ e

We can thus examine the higher-order efficient time-stepping procedures without the
added complexity of nonlinearities, except in the Neumann boundary condition.
Also, for simplicity, we shall present the details for the particular method

whose choice of parameters yields time-discretization error of order (At)L where
= 3. Proofs of stability and convergence for the other methods follow similarly
aind can be derived from the proofs of similar problems which appear in [7].

For u = 3, the base approximation scheme for (4.1) from (2.13) can be writ-

+
(0" + = aeqa  vo™t, )
e o (4.2)
n+l ~n+l 7 Pl 2 n-1
= A — 5 " a— X ’ X '
11 Sedale LU ) LX)+ de I3 SU - 5T R €M
where c c(x,tn+l), a = a(x,tn+1), and ﬁn+l = 3Un - 3Un_l + Un-2' Let
n+l n+1l
nt = un - wn and cn = V" - w". We know from Lemma 2.1 that W is a function in

Mh which is sufficiently close to u. We next estimate how close V and W are.

From (2.6}, (4.1), and (4.2), we obtain the followina error equation




5 n+l Eﬁi o on+l
(cn+1 g ¢+ X) (a +1\C + ¥X)
0 - n=1 6 +1
o v BT e BT P
n+l[11 ¥ 1.x) + I3 Ast (0", )
L 7 2 n-1
+ At TR 2
(Cn+1[ ¢ 11 dt” P 1.x)]
B i e ST SR R B R
n+l'11 at 4 P gy
(4.3)
* f% dtdg (™, T o g™ W™ 0
n+1 -=n+1 6 n+l =n+l, .
- Aol v —
+ [(cn+l(v v )+ ¥ At(an+l (v V), VX))
2 n-1 n+1 n+1
— ¢ — 6¢
(c n+l[11 " 11 TaX )t T, xX) + T, (x)
+ (X) i T (X), X € ”H‘ .
Term T, enters because we are comparing V to W instead of directly to u.
Term T2 measures how well the multistep scheme approximates g%— and term T3

arises from the nonlinearity of g. Finally, the single-step error made by using
the iterative procedure to approximately solve the linear equations appears in term
T, .
4

We shall first present a few lemmas which will help separate the various parts
of our analysis. First we note that the parameters B(u) and ai(u),i I EEES

are chosen in (2.13) to insure the following consistency result.

Lemma 4.1. For each u =1,2,3,4, the choice of parameters R(u) and ai(u),
i=1,2,3,4 given in Table 1 vyields

n+1l 4 : \
18 (u) At %% - o™ - Z a; (mu Ay < K3(At)u+1 . (4.4) E

We next consider the following lemma which will provide the estimates for the i
basic stability of our methods.

Lemma 4.2. Assume that 2" satisfies, for m > 2,

rot n+l 6 +1
D e 1827 ) + 17 At(a vz, 7))

n=m (4.5)
2

Aol n-1 n+1l
{ [(cn+1[—~ sz" - T2 LX)+ (FTLNT, XeM .




e

n+l

'hen there exist constants K4, KS and Kh such that setting X = yields
s 12 -1 2 2
Izt . N URTSARN I PLASY IS
n+l
n=m a ('1.“)

¢

2 -1 2 -1 2 -1
< K4[”2m" +, ik lezrtt & ¥ z2* Y ae + ) Pvh gLy 1y

n=m-2 n=m-2 n=m

- | 5
setting X = 02 vields

-1 2 2 2
5 ”‘52n+1”‘ + At“zeul < KRlAt"zm"l

n=m n (4.7)
m-1 2 -1 2 -
¥ ¥ H|52"+1H| + ) Hz”*‘"1<A¢»‘ + | ¥ it - ket 1§
n=m-2 5 n=m-2 n=m
also, setting X = (n+1)57.n+1 yvields
-1 2 2 2 L=~1 2
y (n+1)H]62"+1H| + cAtHz°"1 < K ImAt ":'.m"I . sz
n=m n n=m-2 (4.8)
-1 2 L-1
OAt (1+At) n+l N n+l n+l
nzm o "Z “‘"+l + !nim(p+l)(¥ A8 31

Proof: See [7].
The following version of the discrete Gronwall lemma is trivial.

Lemma 4.3. Let fj >0, B. >0, and y > O. Assume that for n = 1,...,¢,

j
n-1
TR LAt %
s B .2 61 ]A b
J
and
n-1
Y Bt <M .
jem

Then, fn <yexp M, n=ml,...,%.

We shall assume that an efficient start-up procedure using the same precon-
ditioned iterative methods as described in Section 3 has been used to determine
initial approximations satisfying

L N [P

2
i=0 i=1 '

3 3 ,
i-1 = K+ a0 . (4. m

For the description of such a start-up procedure and proof of the given estimates,
see [3].




We next state the major result of the paper.

Theorem 4.1. let u and U satisfy (4.1) and (4.2), respectively. Let V be th

tterative variant of U satisfying (4.9, (3.10), and (3.11) with v" satisfying

)
(4.21) below. Let u ¢ L‘(J;Hr) n wi(a;wi) and either
T g, ’
du 2 . 3 - e ;
a) f t ;;1‘.t) rdt S~ K when { is H -regular and h" < CAt, or
[

R) 2
D) 3¢ L@
Then there exist constants Ka(u), depending upon the norms of u, and hu and
T, Such that if r > d/2, At < min{to,hd/e}. and h < h,,

suph” - vl <k T e oy .
n

+1
Proof: Letting X = ‘\"“

2 =) 2 2
Pl IO I PP AW L

in (4.3) with m = 3 and using (4.6), we obtain

n+1
g : (4.10)
2 -l 2 2 t-1 4
< K4KHL3" + 2 {"GtN*lu 5 ch+1" Y+ | 2 E TY“((“‘I)II
n=1 n=3 i=l
Next, we see that from (2.7) and (2.11),
t-1 L=-1 2 4
) 'TT*l(cn+1)| <k T ™Yy 1™ . ) "dtn"‘l j"_lﬂcnu"lmt
o ot i (4.11)

t-1 2
PR WTVRULIE S Pl o
n=3 a

u .
bt - vy . f (2.7b) instead
where Kq Kg‘““"{:(’,“r) + "atan( ,Hr°1)) We note that use of ( ) instea

of Lemma (2.2), would have required the assumption %% € Lz(J;Hr). a much stronao
smoothness assumption. From Lemma (4.1) we see that
-1 -1 2
n+l o n+l 6 1 n+lu "
= ’ 4.1
LT, @] s rwtae)” ¢ & ¥ “c ne1 8t {
n=3 n=3 a

We next use (2.4) and smoothness of W to obtain the bound

]2«

el e e




e g e e

- -1 2 z
2 lT?+1(Cn+l)1 < x 2 (ICn+1' & Kz(At)3 " 2 ]écn+1—)])lcn+1|At

3 n=3 =0 (4.13)

2
< kwion®+ 2 [“c"+1“ + Hc;"*lﬂ 1At} + = 2 "c"‘lu

n=3 a 1
Using (3.8), (3.11) and (3.12) we see that
- L-1
DImgtte™h] < T Ie™t - e
— n n
n=3 n=3
e-1
4 n+1 n+l
<1 ot M6 11111 ki
n=3 "1 h (4.14)
-1 3
e 4 1
< I rewer O Ise™ g+ ao D™
n=3 i=0
< K 6)° + "c"“ At) + = Z "c"“
n-3 n=3

L p 2

1 +1

v b fle™ i
n=0

Noting that the multiplier in the last term on the right side of (4.14) is bounded
by (n+1)/16 wusing (3.12), we combine (4.10) - (4.14) and use (4.9) to obtain

2 -1 2
2l 1 n+1 n+l
Ic* +5£;hc - "+1u

-1 e

<k@m¥ + a0+ T 1 ae (4.15)
n=3
-1

+ K, z ulcc"*lul e 22) e "*1n|

We note that if we can bound the last two terms on the right of (4.15), we can then
use the discrete Gronwall Lemma to obtain our result. In order to bound the next

to the last term on the right side of (4.15) we let X = Gcn+1 in (4.3) and use

(4.7) to obtain

=1 2 2 2 2 2
+1 ([ 3 2 3
1 lle I, + aehe® ) < xgrael 0+ Mse®i, + Mmesei,

(4.16)

+ 2 "c“*lﬂ wer? + | 2 { T e™h )
el =3 is1
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As in (4.11) we use (2.7) and (2.11) to obtain

-1
Ulr™se™h | < xn®

i-1 i
, Y Msc™ W . (4.17)
n=3 - "

1
. n=3

Similarly we see that

2-1 2
2 ]T"*l ™| <k aer® + LT Ne™ . . (4.18)
n=3 =3 "

@[~

Using (2.4) we then see that

2
E ‘ n+1 n+1)l <K Z (Icn+1| " K2(At)3 o 2 luml-jl)lscmll[\t
n=3 n=3 j=0 (4.19)
< % E ”Isc“+1”| + k(w { (ar)® X l"c“+1" At + Hc“+1“ (at)°1)
n=1 n=1

Then, as (4.14), we use (3.8), (3.11), and (3.12) to obtain

2-1 -1
+1 +1 4 n+l 1
23|T“ (™| < 23 o2 I8V I Wee™ Il
n= n=
-1

[l\

z My, nal z |||aa“*1"||n_'i s aofy ™l @20

K(w (86)° + 12 Z paKyo, n”lﬁc"+ln|

A

where Klo % depends upon local upper and lower bounds for the coefficients an
’
and s (see (4.21)). Then iterating on the preconditioned iterative procedure

sufficiently often that

-1 min{a(tj) : j=n+l,n,n-1,n-2}

p_ < (48K, . ) = ' (4.21)
iy Alken 48 sup{a(tj) : j=n+l,n,n-1,n-2)
combining (4.16) - (4.20), and using (4.9) we see that
"'6;"*1”' + Atu;“ﬂ
n=3 (4.22)

-1 2 2
< k@ + @0® « T ™ ae + 1™ a0 ?n
n=3

In order to bound the last term on the right side of (4.15), we let X = (n+1)5cn+l

and use (4.8) to obtain

A A




N
)

el R . detl camdeol . ol
 (n+1) ||| 6¢& L1 + LAt g ) b'li.t - 4 & Bog

il -l (4.23)
t-1 2 t-1 4
" T4 \ I
v 74t ” ,.ml ” o1 ): Pt ((ne1) 6™ 1) r
» 22 n+l b 1
n=3 a n=3 i=]

We note that (4.9) and (4.22) can be used to bound the first term on the right side
Of (4.23). We next obtain

-1 -1 2 _
| § (m;)T';”("n”)f <k Y me™M nec™N . ;Iidtn"”-)ll_lllSr,””lll](ml)"n
e -3 = (4.24)
t-1 i 2 g- 2 1-1 3
d. F)‘ (r\tl)”|‘~'-n+”” + K 5 "”n*l" At + K \ "d H“”” (n+1) At
- 16 & n g & t -1
n=3 n=3 n=1
' 2 3
If u+« L (J;H), we have from (2.7) that
-1 2
5 lam 2 ae < k(wh’' | (4.25)
n=1
2
Then, using (2.11) we have, if h < At,
-1 2 0-1 2 nel )
+ 3 2r+2
§la n™l (nerrae < x L el Y L “ 1h“TH (ne1) At
ot t -1 - and r ot r
(4.26)
T
2 3 2 2
< K(f tllha(e,t) IIr - "a—t‘l(-.t) "rldt)h "
0

2 N g J " :
Note that h < At is not a strong restriction for these high order time-stepping
methods. The constant on the right of (4.26) determines the smoothness assumpt ions

3 ; ; :
we need on u and 5% for this argument. We note that for linear, time-dependent

problems the assumption

T
/ t"g—‘i(-,t) Pae < x (4.27)
t r —
0
. . sa 2 r-1
15 roughly equivalent to 3 € L (J:;H ), the assumption needed for (4.11), and
much weaker than the assumption %% € LZ(J;Hr) which has been made in [7, 11, 17)
fur similar estimates. Using (4.4) we see that
-1 =1 2
LIyt imense™h ] < & 7 wen flae )« kv ao® L @
.- 2 = 16 n_:_; n
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We next consider the T3 term from (4.23). Note that

LT 2™ meny 6™y | < | Z &2 2™, 6™ (ne1) ot
n=3 n=3
3 n+l , n+l POy (4.29)
+ | { <—9- 8™, 6™y ime1) e} » | Z <—9- n*,8c™ %) (n+1) At
: n=3 n=3
i = Tg + 'r6 + T,
'r6 can be bounded, using (2.4), as follows
=l n+l-j 1
Tg <K ] 2 | 6z | 182™" ] (n+1) At
n=3 j=0
P 2 (4.30)
. Ls Z loe™ 2l (ne1) + x “5;“ 1" (n+1) (A1) .

n-l

Then using a technical summation by parts argument and estimates like those used in
(4. 300 we can obtain (see [12, p. 27-29] for details)

2 2 2

T oW, 4 -11— 2 {H L a1y« D™ ne18t) }13 “c”'let
n=1 a

(4.31)

2 2
+ K{“C3“1At + (At) + 2 I“Gcn“ oSt At) I“cn+1" + “Cn#lul(n+1)At]
n=1 L

2
+ K “CLH fAt

12
As in (4.20), we see that
2-1 2-1 3
LI cmnae™h ] 2§ pnt B Mee™ g + ety llse™ | o)
n=3 n= ’ =0

(4.32}
=1

<x@® +ax T etk 6
" n=0 i

2
n+1"|n(n+1)

Next, by iterating sufficiently often to satisfy (4.21), combining (4.23) - (4.32),
and using (4.9), we obtain




e

R-1 2 2 e-1 2
% ) (n+1)U!5cn*1H|n + lAt"cQ"l} 5_{%— 3 "c“*lﬂ ne1dt
n=1 n=3 a
L
+ K(u) [h + (At) )] + Klz 4 LAt (4.33)

t-1 2 2 2
« k3 et . Hc"*lul(n+1)At}{H6c"" o+ At
n=1 L

Now adding inequalities (4.15) and (4.33) to K times inequality (4.22) and sim-

plifying we obtain .
2 2 -1 2 2
L 2 n+1l n+l
Bt I« Hetl ae o DAL IRCES e “an+1A"

'r 2

%) (h2% + 439} 4 4x12"cl" LAt (4.34)

+

| A

+

2-1 2 2 2
kw § ™. ch+1H1nAt}{"6§n" L+ At}
n=1 L

We next indicate how to treat the term multiplied by 4K
(4.34). Note that for some (l > 0,

12 on the right side of

2 2 y
e ey ae = Belnae = Be™ 2 ae (4.35)
2

2
X el(n+1)"6cn+1H + XHC“" At

4 We sum (4.35) from n=3 to n= ¢ -1, multiply the results by 4K12 + %. and

_<__(8K12 + 1)-1. Next, we make

-

add the final inequality to (4.34). Then take
the induction hypothesis that

o |
-1 2

2 "6;"" - B p (4.36)
n=1 L

Then it follows from (4.34) - (4.36) and Lemma 4.3 that

-1 " 2 & i 2 6
) "6; “ n < 2 exp{ (1+T)K(u) }X(u) [h“" + (at)°] . (4.37)
n=1

It then follows from (4.37) and the inverse hypothesis (2.3.c) that

-1 2 -1 2
I hse™l o < k0™ 5 loe™ln < 0™ 4+ a0 . (4.38)
n=1 L n=1

We note that the right hand side of (4.38) tends to zero as h tends to zero if

e

=]?=




§
H

d ©
T > and At < h (4.39)

BEmpeE———————————

which justifies the induction hypothesis. Since this implies

l':R”- + ”;:n;:ht < th)r + (At)“]

the result follows from (4.40), Lemma 2.1, and the triangle inequality.

We note that similar theorems hold for the original nonlinear problem and for
the other various multistep methods presented. Also, if O 1is a rectangle, rec-
tangular solid, or unions of these regions, alternating direction variants of the
multistep methods presented here are even more computationally efficient. See

| (4, S] for these results.

F V. Computational Considerations. In this section we shall consider some rough

operation counts to estimate the computational complexity of the methods presented
here. We shall see that the preconditioned iterative methods allow us to obtain
very nearly optimal order work estimates and are thus very efficient computation-
ally.

We shall give estimates for d = 2. The procedures of setting up and factoring
n » 3/2 : " - 3 .
L requires O(M ) operations, where M = dim Mh' The solution of (3.2), given
the factorization, requires O(M log M) operations. Such bounds have been shown
to be minimal. If we conjecture the validity of the above estimates for our problem

n :
and refactor L and solve (3.2) at each time step, the total amount of work done
is

- ]
on(M7? 4 M 10g M) = o), (5.1)

-1
where N is the total number of time steps (N = (At) ). Note that the work of
factorization dominates the estimate.

Using the preconditioned iterative procedure presented here, only the precon-
ditioner, LO, must be factored. Let <, be the number of iterations needed to
achieve the necessary norm reductions in (3.11) and (3.12). We note that K, can

be bounded by a fixed constant « which is independent of h, n, and At. Using
this method the total work done is

3/2 :
O(M + NkM log M) . (32}
Since balancing the spatial and temporal errors vields

r
1 0 2u

N~ (at) " s h Y=o

we note that for r > u, the work of solving dominates the estimate, while for
r < u the amount of work of solving is even less than the work to factor one

-18-




matrix, a necessary piece of work. Clearly, in any case, (5.2) is much prot.orable
to (5.1). Also, since the total number of unknowns in the problem is

Q(NM) "

(H%.2) represents a nearly optimal order work estimate when the work i1s at least as
much as factoring one matrix. If alternating divection variants of these methods
can be used, the log M term can be removed from (5.2) and optimal order work esti
mates are obtained (see [4, 5)).

It is computationally wasteful to iterate exactly =« times at ecach time steg
in order to achieve the pessimistic bounds on ¢ aiven in (4.21). Instead, one
n

can monitor the norm reduction actually produced at each time step of the iteratio
and stop i1terating when sufficient norm reduction is achieved., Additional stopping
Criteria can be imposed in this monitoring process t
stoppina criteria for related methods.

. See |9) for a discussion o
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